Trust me I dont understand any of this stuff except for the simple ones I, only a 14 year old asian ;-; so here you are (PS expect alot of stuff below) Mechanics velocityaccelerationequations of motionnewton's 2nd law v = Δs Δt a = Δv Δt v = v0 + at∑ F = m a x = x0 + v0t + ½at2 ∑ F = dp dt v = ds dt a = dv dt v2 = v02 + 2a(x − x0) v = ½(v + v0) weightcentrip. accel.momentumefficiency W = m g ac = v2 r p = m v ℰ = Wout Ein dry friction ƒ = μNac = − ω2 r impulseimpulse–momentumworkwork–energy J = F ΔtF Δt = m ΔvW = FΔs cos θFΔs cos θ = ΔE J = ⌠ ⌡F dt ⌠ ⌡F dt = Δp W = ⌠ ⌡F · ds ⌠ ⌡F · ds = ΔE kinetic energypotential energypower K = ½mv2 ΔU = − ⌠ ⌡F · ds P = ΔW Δt P = dW dt gravitational p.e. ΔUg = mgΔhF = − ∇UP = Fv cos θP = F · v angular velocityangular accelerationequations of rotation2nd law for rotation ω = Δθ Δt α = Δω Δt ω = ω0 + αt∑ τ = I α θ = θ0 + ω0t + ½αt2 ∑ τ = dL dt ω = dθ dt α = dω dt ω2 = ω02 + 2α(θ − θ0) ω = ½(ω + ω0) v = ω × ra = α × r − ω2 r torquemoment of inertiarotational workrotational power τ = rF sin θI = ∑ mr2W = τΔθP = τω cos θ τ = r × F I = ⌠ ⌡ r2 dm W = ⌠ ⌡ τ · dθ P = τ · ω rotational k.e.angular momentumfrequencyhooke's law K = ½Iω2L = mrv sin θ ƒ = 1 T F = − k Δx L = r × pelastic p.e. L = I ωω = 2πƒUs = ½kΔx2 universal gravitationgravitational fieldgravitational p.e.gravitational potential Fg = − Gm1m2 r̂ r2 g = − Gm r̂ r2 Ug = − Gm1m2 r Vg = − Gm r orbital speedescape speeds.h.o.simple pendulum v = √ Gm r v = √ 2Gm r T = 2π √ m k T = 2π √ ℓ g densitypressurepressure in a fluidbuoyancy ρ = m V P = F A P = P0 + ρghB = ρgVdisplaced volume flow ratemass flow ratevolume continuitymass continuity φ = V t I = m t A1v1 = A2v2ρ1A1v1 = ρ2A2v2 bernoulli's equationaerodynamic dragkinematic viscosity P1 + ρgy1 + ½ρv12 = P2 + ρgy2 + ½ρv12R = ½ρCAv2 ν = η ρ dynamic viscosityreynolds numbermach numberfroude number η = F/A Δvx/Δz Re = ρvD η Ma = v c Fr = v √gℓ η = F/A dvx/dz young's modulusshear modulusbulk modulussurface tension F = Y Δℓ Aℓ0 F = S Δx Ay F = B ΔV AV0 γ = F ℓ Thermal Physics solid expansionliquid expansionsensible heatideal gas law Δℓ = αℓ0ΔTΔV = βV0ΔTQ = mcΔTPV = nRT ΔA = 2αA0ΔTlatent heatmolecular constants ΔV = 3αV0ΔTQ = mLnR =Nk maxwell-boltzmannmolecular k.e.molecular speed − mv2 p(v) = 4v2⎛ ⎝m⎞3/2 ⎠e2kT √π2kT ⟨K⟩ = 3 kT 2 vp = √ 2kT m ⟨v⟩ = √ 8kT πm vrms = √ 3kT m heat flow ratethermal conductionstefan-boltzmann lawwien displacement law Φ = ΔQ Δt Φ = dQ dt Φ = kAΔT ℓ Φ = εσA(T4 − T04) λmax = b T internal energythermodynamic workfirst lawentropy ΔU = 3/2nRΔT W = −⌠ ⌡P dV ΔU = Q + W ΔS = ΔQ T S = k log w efficiencycoefficient of performance ℰreal = 1 − QC QH ℰideal = 1 − TC TH COPreal = QC QH − QC COPideal = TC TH − TC Waves & Optics periodic wavesfrequencybeat frequencyintensity v = ƒλ ƒ = 1 T fbeat = fhigh − flow I = ⟨P⟩ A power levelinterference fringes β = 10 log I = 20 log P I0P0 nλ = d sin θ nλ ≈ x dL index of refractionsnell's lawmirrors and lensesspherical mirrors n = c v n1 sin θ1 = n2 sin θ2 1 = 1 + 1 ƒdodi ƒ = r 2 critical angle sin θc = n2 n1 M = hi = di hodo Electricity & Magnetism coulomb's lawelectric field F = k q1q2 r2 E = Fe q E = k ∑ q r̂ r2 E = k ⌠ ⌡dq r̂ r2 field and potentialelectric potential E = − ∆V d ΔV = ΔUE q V = k ∑ q r V = k ⌠ ⌡dq r E = − ∇V capacitanceplate capacitorcylindrical capacitorspherical capacitor C = Q V C = κε0A d C = 2πκε0ℓ ln (b/a) C = 4πκε0 (1/a) − (1/b) capacitive p.e.electric current U = 1 CV2 = 1Q2 = 1 QV 22C2 I = Δq Δt I = dq dt ohm's lawresitivity–conductivityelectric resistanceelectric power V = IR ρ = 1 σ R = ρℓ A P = VI = I2R = V2 R E = ρ J J = σE resistors in seriesresistors in parallelcapacitors in seriescapacitors in parallel Rs = ∑ Ri 1 = ∑ 1 RpRi 1 = ∑ 1 CsCi Cp = ∑ Ci magnetic force FB = qvB sin θFB = q v × BFB = IℓB sin θdFB = I dℓ × B biot-savart lawsolenoidstraight wireparallel wires B = μ0I⌠ ⌡ds × r̂ 4πr2 B = µ0nI B = μ0I 2πr FB = μ0I1I2 ℓ2πr motional emfelectric fluxmagnetic fluxinduced emf V = BℓvΦE = EA cos θΦB = BA cos θ ℰ = − ΔΦB Δt ℰ = − dΦB dt ΦE = ⌠ ⌡E · dA ΦB = ⌠ ⌡B · dA gauss's lawno one's lawfaraday's lawampere's law ∯ E · dA = Q ε0 ∯ B · dA =0 ∮E · ds = − dΦB dt ∮B · ds = μ0ε0 dΦE + μ0I dt ∇ · E = ρ ε0 ∇ · B =0 ∇ × E = − ∂B ∂t ∇ × B = μ0ε0 ∂E + μ0 J ∂t Modern Physics time dilationlength contractionrelativistic massrelative velocity t' = t √(1 − v2/c2) ℓ' = ℓ √(1 − v2/c2) m' = m √(1 − v2/c2) u' = u + v 1 + uv/c2 relativistic energyrelativistic momentumenergy-momentummass-energy E = mc2 √(1 − v2/c2) p = mv √(1 − v2/c2) E2 = p2c2 + (mc2)2E = mc2 relativistic doppler effectphoton energyphotoelectric effectphoton momentum λ0 = ƒ = √ ⎛ ⎝1 − v/c⎞ ⎠ λƒ01 + v/c E = hfKmax = E − ϕ = h(ƒ − ƒ0) p = h λ schroedinger's equationuncertainty principlerydberg equation iℏ ∂ Ψ(r, t) = − ℏ2 ∇2Ψ(r, t) + V(r)Ψ(r, t) ∂t2m Δpx Δx ≥ ℏ 2 1 = −R∞ ⎛ ⎝1 − 1⎞ ⎠ λn2n02 Eψ(r) = − ℏ2 ∇2ψ(r) + V(r)ψ(r) 2m ΔE Δt ≥ ℏ 2 half life N = N02−t/τ
I know most of these formulae, in the coming months I'll know all of these. They're all in my syllabus
I took physics as a freshmen and hated it with a burning passion. I did really well, which kind of made me hate it more for some reason, so now I just take chemistry which is a lot more enjoyable.
im a white girl and I comprehend almost all of this without an issue. computer science major, i need this info or i die **edit: also, not sure if you made this list or not, but imo i'd put waves (- optics) under modern physics. but hey thats just me Also just me, but the lamta (wave symbol) has always reminded me of a wishbone. it's wonderful.